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Abstract 

The steady motion of a planing surface of moderate aspect ratio at smaii angles 

of attack is considered.   Linearized theory is used with a square-foot tyj« of pressure 

singularity representing the flow near the leading edge.   An asymptotic solution for 

the pressure distribution on the planing surface at large Froude number (or small    &   , 

the inverse of the Froude number) is sought.   The lowest order term of the pressure 

distribution, obtained by setting    ß    equal to zero, is found to be thp same as the 

pressure distribution on the lower side of the corresponding thin wing.   Higher order 

terms in    &    are obtained by an iteration process.   Explicit solutions are obtained to 

order    3       for rectangular planforms.   Numerical results are calculated for rectangular 

fiat plate planing surfaces of aspect ratios from 0,5 to 2.0.   It is foi.d that for large 

aspect ratios the lift coefficient is reduced by the gravity effect and for small aspect 

ratios it is increased, the dividing aspect ratio being about 1.5.   The results compare 

reasonably well with experimental data. 



I.   Introduction 

When a surface craft moves at low speed through water, the lift, which supports 

the craf* on the water surface, is supplied mainly by buoyuncy.   If the speed of the 

craft is increased so that the water surface separates smoothly from the trailing edge of 

the craft, the craft is said to be planing, or gliding, on the water surface.   During 

planing motion, the lift is mainly supplied by hydrodynamic forces. 

An important feature of a planing motion is the splash phenomenon, which is 

a spray sheet thrown out ahead and sideways of the planing craft.   If the angle of 

attack, which may be defined as a characteristic angle between the wetted surface of 

the planing craft and the undisturbed water surface, is small, the thickness of the 

splash is expected to be thir».  Green (1935,1936) made non - linear studies of two- 

dimensional flat plate planing at an angle of attack    o^   with an Infinite Froude number. 

The Froude number Fr is defined as the ratio of the inertia effect to the gravity effect, 

or Fr = U /g£    , where U is the speed of the planing craft, g the gravitational accelera- 

tion and   1    c characteristic length.   In his results, the thickness of the splash was found 

to be proportional to    a     for    o^    small.   Wagner (1932) studied both '■wo-dimensional 

and three-dimensional planing problems at infinite Fr.     In his linearized vormulation, 

the governing equations were shown to be the same as those found in flows past thin 

wings, except that in planing problems the fluid under consideration is in contact 

with the wing on the lower side only.   It is well known that in thin airfoil theory the 

pressure has a square-root singularity at the leading edge of the foil.   Based on a local 

flow study, Wagner showed that to represent the splash in planing problems, the same 

type of pressure singularity should be used. 



When the effecl- of gravity is considered, two-dimensional planing surfaces of 

various shapes have been studied by many authors (cf. Wehausen & Laitone (I960)). 

Recently, Mcruo (1967) considered three-dimensional planing surfaces of large and small 

aspect ratios; however, for small aspect ratio, his method requires Fr to be very large 

and is not applicable to a rectangular planing surface.   In the above solutions it was 

assumed that, as in the case of infinite Fr, the splash was a second order quantity in 

angle of attack and might therefore be neglected in the formulation of the linearized 

theory and that the pressure has a square-root singularity at the lending edge. 

In this paper, we consider a steady, three-dimensional potential flow past a 

planing surface of moderate aspect ratio at a large Froude number.   We assume [hat 

the angle of attack is smal1 so that the problem may be linearized.   In formularing the 

problem, we represent the planing surface by an unknown pressure distribution over 

the part of the water surface directly underneath it.   The geometric configuration of the 

splosh will be neglected and the pressure is assumed to have a squore-root type of 

singularity cf the leading edge of the planing surface.   The perturbation potential due 

to this pressure distribution is expressed in the form given by Peters (1949),   It involves 

a quadruple integral with the integrand linearly proportional to the unknown pressure. 

The kinematic boundary condition on the planing surface will lead to a linear integral 

equation for the unknown pressure distribution.   To facilitate the solution of the integral 

equation, we expand its kernel for points nearby the planing surface, asymptotically 

for Fr   —*■   OQ .   In this expansion the unknown pressure distribution is regarded 

as if it were independent of Fr,   Then in a similar fashion an iteration process will 

yield successive farms in the pressure expansion.   When Fr is set to infinity, only the 

lowest order term in the expansion remains.   This term corresponds to the downwash 



infegral eqijation in winq theory, except that the pressure i« equal to one-half of the 

loading on the corres^.c ing.   The downwash integral equation is solved using a 

method similar to that of Watkins, VVoolstonand Cunningham (1959).   From the solution 

of the downwash integral equation, the lowest order term of the pressure expansion in Fr 

is obtained in terms of the given "downwash".   At ec^h stage of the iteration process the 

same dowrwash integral equation has to be solved.   The solution of Hie downwash inte- 

gral equation provides each new term in the expansion of the pressure in terms of the pre- 

viously obtained terms.   Our solution is carried out up to terms of order Fr~^.   The 

above iteration scheme has been advanced by Cumberbat'h (1958) in solving two-dimen- 

sional planing problems at high Froude number, 

in this paper numerical results are given for rectangular flat plate planing sur- 

faces having aspect ratios from 0,,5 to 2.0. 

2.   Derivation of the integral Equation 

Consider a planing surface of moderate aspect ratio travelling at a constant 

velocity Ü over a water surface of infinite extent.   The angle of attack is assumed to 

be- small, so that linearized theory may be adopted.    The water is considered to be in- 

viscid, incompressible and of infinite depth. 

We choose a set of Cartesian coordinate axes x-y-z fixed to the planing surface. 

The x-y plane is assumed to coincide with the undisturbed water surface, the x-axis 

pointing in the direction opposite to the velocity U and the z-axis in the direction op- 

posite to the gravitational acceleration g.   In this frame of reference, the fluid at in- 

finity appears to have a uniform velocity U in the x-direction and the motion becomes 

steady.   We choose U as our characteristic velocity.   For planing problems the proper 



characteristic leng h should be measured in the flow direction.   For a three-dimensiono! 

problem anothe- characterist'C length is the span  vidth.   Therefore two Froude numbers 

can be def.ned.   For convenience in numerical evaluation we choose the semi-span 

width as the characteristic length.   Since we are dealing with moderate aspect ratios 

only, the choice is not important.   Based on these characteristics quantities, the velocity 

potential     <£ (x,/.z) can be written as 

where x denotes the velocity potential corresponding to the uniform velocity when viewed 

from the x-y-z system and   <p (x/y/z) is the perturbation potential due to the presence 

of the pianmg surface.   It is obvious that   «p    satisfies the Laplace equation 

^4>=o. (2) 

Let us denote the area projected by the planing surface on the x-y plane by A. !f we 

represent the planing surface by an unknown pressure distribution on A, the linearized 

boundary condition of    4>    may be expressed as (see Wehausen & Lairone (I960)), 

^■^f äT"^ on    t-o,        (3) 

where the non-dimensional small parameter   ß     is defined by 

/9 = Si/vz =   l/Fr (4) 

and where     p spfx.,^)   is the non-dimensional pressure.   We take the ambient pres- 

sure to be zero and define    V    as the ratio of the pressure to the dynamic head X" ^,■ 

where    P      is the density of the water. 



From the definition of p it is clear that on the free surface, or on the part of the x-y 

plane outside A, 

f =0, 

and on A, as stated before, p is unknown.   The other boundary conditions on  4» 

may be stated as 

(5) 

V^ =o 

.  X = -oo (6) 

M= ± öo (7) 

> ■£ » - £>o (8) 

Condition (6) assures us that no gravity wave will propagate upstream. 

The potential which satisfies the boundary conditions (3), (5), (6), (7) and (8) 

is (see Peters (194?)) 

A ' 

1 

'H(x'SJ\(,+il^)^'^c"nP/,(y'p]exf/,2)   ^ 
(9) 

where sgn (x- |   ) is the sign function of x- |     , H(x- 5   ) is the Heaviside step function 

and 

/■=^ 
jJiw! (10) 



If Hie prof'le of the planing surface is expressed by 

i =^.v. (11) 

and if we denote 

" ^x (12) 

the linearized kinematic boundary condition on the planing surface requires that 

WU,M) = I'.m  1^- lor    [vujonA. (13) 
Z->0   o ' J 

Equations (9) and (13) will give us an integral equation for the unknown pressure distri- 

bution on A.   When we differentiate (9) with respect to z a term containing sin TZ in 

the T integration is produced.   It can be shown that this term gives no contribution as z 

tends to zero.   Therefore, the integral equation for the unknown pressure distribution on 

A becomes 

^'^it^jW*-^ ri.itfiW'V&v (,4) 

W1 here 

t\z\t vo 

(15) 



!n obtaining (15), (10) has been used, 

3.   Large Froude Number Expansion 

In this section we shall expand asymptotically the kernel function K(x- % , y- If   , 

z;  A ) for larae Fr, or small  ^   , when (x,y) is on A and z is small.   The method of 

expansion depends on the aspect ratio being of order 1 or smaller. 

Let us denote the double integral occuring in K, shown in (15) by 

I, -^ «s^dv/^     ^^^^       ,-e>cp[-Jr%^|x|]Jy.    (16) 

( 

A change of variables 

x=l C£>5© V   =^5irt e 

transforms (16) into 

I, =\ cos^el   Wil   %  cos(-feijs;n0)cfl5(-|2««w©jeKp(--|/Xi>)c(-| 

f 
^2 2     :* 

= ^R 2"r\e\   cos 

where 

'eJe,Qj^p(4+.^^Uj#^^j, (I7) 
i'1 o of 

+, = |X| + t (ysjlne + 2cose;   , 

■\[) s=jx)  + i. (Mi;n© - Zcos©3 .      ^ 

(18) 



The integrations with .expect ro k in (17) can all be carried out and we have 

K ■L-J. I M     ' l       .' 'o T 5 
0i! 3 l 

-Si«(Ä^-c*»©;5i{S^ciÄJöHV , 
(19) 

where ci(x) and si(x) ore the cosine and sine integrals respectively ond ore defined as 

K n»t 

In (20),    T   is Euler's constant.   Under the assumption that the aspect ratio ii not large 

y\i     ,    ^     = 0(1) and therefore Ij may be expanded asymptotlcoily for    &    snai!. 

The expansion vaiid up to the order of   ß      is 

+Bco/e[zr+ 2lncos6 +2tnfi   + ~ In (xZ + [ijsm0 

+ ^^öj)(xi4-[j^;oe-2co5e]i)j + OCjsM • (22) 

!n the last expression of (22), the first two terms inside the curly brackets arf independent 

ß     , and hence, gravity free; the remaining terms are dependent on    /Q     ,   Since 



we expect to obtcin the dov/nwosh integral equation in wing theory, er.cepf for a factor 

of 1/2, from the integral equation (14), and since when x   <: £       the kernel of the integral 

equation (14) is proportional to I], we expect to recover the kernel of the downwash 

integral equation for x  «5     from the gravity free terms in (22).   This means tha* if we 

2 
set z = 0 in (22) we should expect a singularity in y of the form 1/y   to appear after the 

6 integration.   The meaning of this type of singularity is well known (Thwaites (I960)). 

Since the remaining    ß~ dependent terms in (22) will not produce a singularity stronger 

than that of the gravity free terms we mcy, therefore, set z = 0 firjt and then integrate 

with respect to Ö.   This yields 

\U*u]^J]]+Oif)\. (23) 

Now, let us denote the single integral term occurring in (15) by 

.Co r       2 > r 

where \i-, is given by (10).   We note that In (24) we have to consider only x  >   0 as can 

be seen clearly from (15).   Since X2 's ^ even function of y »ve need consider only y >   0. 

The integral Jo may be regarded as representing port of the downwash due to a 

concentrated pressure point moving on the surface,   it ^nerefore contains 0 singularity 

of high order along the track lino y ~ tf     for z = 0,   However, as pointed out by Lamb 

(1934), the singularity is due ?o the artificial na'.ure of a concentrated pressut^1 point 

and disappears for a diffusen pressure.   Therefore, when n^cessory, the   J7 - Integra- 
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fion will a'woys be carried out first to remove the singularity in   (y - rt    ) that would 

otherwise appear as z goes to zero.   In the following expansion procedure forlj we shai 

assume 2 to be different from zero, when necessary, in order to avoid the appearance 

of the singularity in y. 

By using 

vZ-^clyisly* (25) 

equation (24) may be written as 

rtfi 
2 1 

I,  = z~ß\    chMe**(ßyc\yuskM)c^(Axciyi)e*fC&1ck'}u}J/#.   (26) 

Let us add 

1    J   c"/^
5;^</fi3c^5^->5^f/3x^li/t;expG52^i1Voc[/< = 0 (27) 

to (26^ to obtai.i 

I, = i = 'ReÄ \   ck^( exp[52ck^i + iÄ(jc^*tffU -xckuJJelM.    (28) 

TX 
The path or integration in (28) may be changed to C which runs from    - ^ + T" t     to 

00 + ~7' <•        parallel to the Re p-axis.   Along C 

/ 
C^ = JT^^ +1^) 

(29) 

where t is purely real.   The expansion of exp(-i ß  xchu) into power series of (-1^ xchu) 

and the substitution of (29) Into (28) give 



00   *6 flM 

ski - tchi3 

(30; 

By the blnomiai expansion of (sht - icht)0       and by separation into real and imaginary 

parts we can write 

I,  = 
l -00      ^..„-.^ w--0.2.^--- 

S^
4
TJ^   ..   ,l„ »    .I^/_l :la     -tck ts;M^Ä2^)T««p(-xÄ3cta4)ik. 

(31) 

It can be seen that when n is odd the integrand in (31) is an odd function of t.   Therefore 

the only contribution is from even values of n, in which case we can write 

5k        icK^:    =(1) Cckii-O (ck-t + .J
L 

YM   c^/en 

YV-t-4 n-t-3-w yrt-i (32) 

=(7)     (cKz^-lj        (ckz^ + l j 'sKz-t     r^  odJ . 

n = 2 J If we set n = 2 V    with m = 2|j for m even and m = 2p + 1 for m odd we get 
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A. Jf". b   A >U      ^ 

sV^4 ^^(Ypskzt)} exp (- {fljckz-t^i . (33) 

In (33), we write 

(cUlitO'-p^li), (34) 

and noting that the integral is uniformly convergent for y ^ 0 we get 

/*= y SO / ^ -«0 

^(kisKzD^pl-ffij^l-l:)^^ (35) 

where      -^r- accounts for the factor sh2t.   The integral occuring in (35) can be 

transformed into 

I = i^e^l-iß^TFcUai +IS)]^. (36) 
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where     %    =tan    (z/y).   For z   ^   0 we have -n/2 ^    S  -'S    0 since we need con- 

sider only y    >      0.   By the change of variable 

V   =  2t + i-S (37) 

T becomes 

;s 

Since the first integral in (38) is purely imaginary and since     — TC/Z £ S £ O      , 

we have 

r i 
J- =\) e^p(-7^^2

+i
2cU)Jv. (39) 

The alx>ve integial can be integrated (Watson (1944)) to give 

where K0 is the Bessel function of the second kind with imaginary argument, which, for 

A      small and      7 y2 + z   = 0(1), can be expanded as 

i .  2>i 

I ' -yv> = 0 *■       ■ ^ 

2-m 

(w.'r (4i) 
W:«» 
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w here 

^(w+i; » JL +i|,(Trt j 

(42) 

4(1) = -x- 

and     TT     is Euler's constant.   With the aid of (40), I2 given in (35) can now be written 

as 

I  _,! i^4  .a       fl ,,,'+; 

VaO '    Um.O / 

$-tf^cp^t%-kf&\ 
M«0 

Kc(tfJ^?). 
(43) 

Using (41) and (42), we may expand (43) for    ß     small as 

fx5f+ i*4i|>'r^ ^fp3; 
(44) 

The substitution of (44) and (23) into (14) gives 
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^--^4^n^^]ft^l+^S{^M A 

A 

+ {i*-V ^Vniiyv + tm.l^l} +0(ß3) , (45) 

Now, we interchange the order of Integration and        differentiation with respect to 

y in (45) and then let z tend to zero.   In doing so we must evaluate 

1»"»   \   P(l   7 )    —, r Ji Yl (47) 

where 

1 ^ 
where the integration is carried out over the entire span, and it is understood that z 

tends to zero through negative values.   The result is 

-TCp^). (48) 

This procedure is carried out to allow the distributed nature of the pressure ro overcome 

the high order singularities In y that were mentioned previously In connection within. 

This gives 



IS 

-^^Ö^fir^^iff^-Hr.^ f. 
L.E, 

L.E. 

5^ 

a 
A» (49) 

where G( x- ^     , y - H     ) 's given in (46), the lower limit L.E. indicates that the 

integration starts from the leading edge of the planing surface, and Ax is the part of A 

bounded between the leading edge and the l'ne      | = x. 

4.   Application to a Planing Surface of Rectangular Planform 

In this section, we shall consider a rectangular planing surface having the 

leading edge at x = -b and the trailing edge at x = b.   The integral equation shown in 

(49) will be solved by an interation process.   The unknown pressure distribution on A is 

expanded into 

(50) 
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where   Xnl^) is the Birnbaum expansion (1923) derived from thin airfoil theory. 

It is defined as 

hv-ckz 

= siv^n© 

when n = 0 

wi hen n > 1 
(51) 

where 

-I 0 =cos" (-|/b3 (52) 

However, In actual calculation, the series given in (5C) will be truncated. 

The iteration process starts by assuming     ß := 0.   Equation (49) reduces to 

W(n^) -MS [i+ <-ä    i iäm 
(53) 

Except for a factor of 1/2, this equation is the downwash integral equation for a thin 

wing.   Expanding p( ?   ,  n    ) in the form of (50), (53) can be solved numerically.   The 

method used is similar to that of Watkins, Woolston and Cunningham (1959).   The 

so ution to (53) gives the first term, p^(  5    , /7    ), in the expansion of the pressure 

as 

M     M 
(54) 

"»A = e A-b 

where M and N are constants.   Using the solution for p0 ( ^  , «   ), equation (49), 

when approximated to order    A      may be written as 
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To solve (55), we write 

fd.p =P.a^^pi(|j?). (56) 

The substitution of (56) into (55) and the use of (53) and (54) give 

where the integrations on the left-hand side can all be carried out analytically.   This 

Integral equation for    P, {|( y ) is of the sarne form as (53),   However, the second 

2 -3/2 
term on tht left-hand side of (57) contains singularities of the form (1 - y ) as 

y —♦•       t  1, at the tips of the planing surface.   This singular behaviour of the in- 

duced downwash moy be due to the linearization of the problem.   We assume that away 

from the tips the error due to linearization Is smaller.   Also, the numerical methods 

used to solve downwash Integra! equations of the form (53) do not use the values of 

the downwash  V(x/y) at the tips.   Furthermore since the pressure vanishes at the tips 
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we expand     ^.(^ £_) in the same form as      f.f?, ^ 3        given in (54).   We 

therefore write 

n    -       ü5     ^ 
(58) 

Wc may expect this theory to become inaccurate for coses where the influence of the 

tips is large, for example a rectangular plate of small aspect ratio.   But, on the other 

hand, small aspect ratio planforms of other shapes such as delta wings will nor be in- 

fluenced as much by this tip effect, and we therefore expect the approach to hold 

even for small aspect ratios. 

Using the solutions for p0(  %   , 0    ) and p^(   % ,  0   ), equation (49), when 

approximated to order   ß      , becomes 

- b 

* cw    -^     ^* 

— b "b I 

A A 

^{^   n^f^fpiUyv" " t} (59) 
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where G{ä- |     , f f     ) is given in (46),   In (59), the known functfons have been col 

iected on the lef'c-hond side and ali the intsgrals there can be integrated analytically, 

except the one contoining sgn(x - 3    ), which must be integrated numerically.   The 

integration of the Integra1 

M     M 

\ ui.v^riUi -^ E E a^ irt(M [ 
'Wli E> t\~0 

ÜT) T«f 1-3. 

where !(m/2) indicates the integral port of m/2, 

-i^'-hj+M for m = 0, 

(60) 

B    O 

and the   Y - function is given in (46) with 

for m = odd integers. 

for m = even integers. 

(61) 

(62) 

makes the analytical differentiation with respect to y possible.   The integral equation 

(59) is again the same integral equation as given In (53).   To sclve (59), we write 

f<MJ = fJi.p +^M} *f\?&.i>l*ß +h(i>*l)]. (63) 
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The subsHti-tion of (63) info (59) and fhe use of (55) and (56) give 

(64) 

and 

sin 

A A L 

A 
c   -^ 

A, 

4 rr 

47C JL   i(x-i)%^?/-i typ- l I' 

(65) 

where G(x-^    , Y - >7       ) is given in (46).   These two integral equafions wiIi be 

solved in the same way as that used to solve the integral equation (53),   The solutions 

may be written as 

M     Ki 

FJM^Z £ a^ i rrf i„(i) (66) 
TU zo  Y\'t> 
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end 

The substitution cf (54), (58), (66) and (67) into (63) gives us the first four terms of the 

expansion of the pressure p( 3    ,  fj   ) up to order n   ) up to order   A 

5,   Results for a riot Rectanguiar Planing Surface 

We have carried out numerical calculations for the case of a fio." rectangular 

plate for aspect ratios, AR, varying from 0.5 to 2.0*.   For large aspect ratios !he ex- 

pansions used in this theory are not valid, while for small aspect ratios we have noted 

that the theory becomes inaccurate for pianforms where the tip effect predominates. 

In our presentation of the results we use the parameter 

r      u1     AR 
(68) 

where 2b   is the wetted chord-length.   This parameter ri choser, ,o t^cit the 

resulting Froude number, l/ßc       / 's based on the characteristic length in the flow 

direction. 

We use the experimental data of Sottorf (1934) which have sufficient variation 

in   ßc.     ''o make comparison with a theory containing the gravity effect possible. 

In figure 1 we show the lift slope as a function ?f ^^ect ratio for various values 

of JSC        .   The curve    i3c     - 0 represenfs half of the lifr slope for the corresponHing 

"TFie aspect ratio is defined as the ratio of the span to the wetted chord length of the 
planing surface. 
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wing wetted on both sides.  Curves for   /3C  =0.1 end 0.2 ore chosen to show the effect 

of gravity and to correspond to SottorPs values of ßc   ,   It can be seen that the theory 

predicts that the effect of gravity increases the lift for aspect ratios less than about 1.5 

and decreases the lift for larger aspect ratios.  This tendency agrees with the 

theoretical results found by Maruo (1967) for the limiting cases of large and small as- 

pect ratios and with the results of Sambraus (1938).  As the aspect ratio increases in 

SottorPs data the angle of attack increases and   AG   decreases.  The first grouping 

is for ß     around 0.19 with angle of attack around 4.6 .  The agreement between 

theory and experiment is quite good.  The second grouping is for ßc around C.16 with 

angle of attack about 5.1° and the agreement is still good.  As the angle of attack 

increases (groups 3,4 and 5) the difference between the theoretical and experimental 

results increases but the agreement is fairly good overall.  This indicates that the 

non-linear effect of larger angles of attack may play an important role.   Generally 

speaking the observed values are higher than the calculated values. 

In figure 2 we show the position of the center of pressure as a function of 

asp/ect ratio for various values of   Bc      .  The data are much more scattered compared 

wifh those for the lift slope.   However, agreement is reasonable.   Figure 3 illustrates 

the chord wise pressure distribution at mid-span and at 90 percent of the span, for 

aspect ratios 0.5 and 1.0.  The effect of gravity is to increase the pressure towards 

the trailing edge and towards the tips.   For larger aspect ratios the increase in pres- 

sure is not as pronounced. 

In conclusion, this analysis of planing surfaces of moderate aspect ratio has 

proved to be reasonably accurate. For smaller aspect ratios we can still obtain re- 

sults from this theory bur the validity of the model used Is then doubtful.   This 
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limitation is due to the singular behavior cf the induced downwash near the tips, which 

becomes increasingly important as the aspect ratio is reduced.   Further work should be 

directed towards the correct modelling of this tip effect. 
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